Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Objective.We aim to assess the severity of spatial neglect (SN) through detailing patients’ field of view (FOV) using EEG. Spatial neglect, a prevalent neurological syndrome in stroke patients, typically results from unilateral brain injuries, leading to inattention to the contralesional space. Commonly used Neglect detection methods like the Behavioral Inattention Test—conventional lack the capability to assess the full extent and severity of neglect. Although the Catherine Bergego Scale provides valuable clinical information, it does not detail the specific FOV affected in neglect patients.Approach.Building on our previously developed EEG-based brain–computer interface system, AR-guided EEG-based neglect detection, assessment, and rehabilitation system (AREEN), we aim to map neglect severity across a patient’s FOV. We have demonstrated that AREEN can assess neglect severity in a patient-agnostic manner. However, its effectiveness in patient-specific scenarios, which is crucial for creating a generalizable plug-and-play system, remains unexplored. This paper introduces a novel EEG-based combined spatio-temporal network (ESTNet) that processes both time and frequency domain data to capture essential frequency band information associated with SN. We also propose a FOV correction system using Bayesian fusion, leveraging AREEN’s recorded response times for enhanced accuracy by addressing noisy labels within the dataset.Main results.Extensive testing of ESTNet on our proprietary dataset has demonstrated its superiority over benchmark methods, achieving 79.62% accuracy, 76.71% sensitivity, and 86.36% specificity. Additionally, we provide saliency maps to enhance model explainability and establish clinical correlations.Significance.These findings underscore ESTNet’s potential combined with Bayesian fusion-based FOV correction as an effective tool for generalized neglect assessment in clinical settings.more » « less
-
Affect-biased attention is the phenomenon of prioritizing attention to emotionally salient stimuli and away from goal-directed stimuli. It is thought that affect-biased attention to emotional stimuli is a driving factor in the development of depression. This effect has been well-studied in adults, but research shows that this is also true during adolescence, when the severity of depressive symptoms are correlated with the magnitude of affect-biased attention to negative emotional stimuli. Prior studies have shown that trainings to modify affect-biased attention may ameliorate depression in adults, but this research has also been stymied by concerns about reliability and replicability. This study describes a clinical application of augmented reality-guided EEG-based attention modification (“AttentionCARE”) for adolescents who are at highest risk for future depressive disorders (i.e., daughters of depressed mothers). Our results (n= 10) indicated that the AttentionCARE protocol can reliably and accurately provide neurofeedback about adolescent attention to negative emotional distractors that detract from attention to a primary task. Through several within and cross-study replications, our work addresses concerns about the lack of reliability and reproducibility in brain-computer interface applications, offering insights for future interventions to modify affect-biased attention in high-risk adolescents.more » « less
-
Green roof systems (GRs) provide a promising stormwater management strategy in highly urbanized areas when limited open space is available. Hydrological modeling can predict the ability of GRs to reduce runoff. This paper reviews three popular types of GR models with varying complexities, including water balance models, the U.S. EPA's Stormwater Management Model (SWMM), and Hydrus-1D. Developments and practical applications of these models are discussed, by detailing model parameter estimates, performance evaluations and application scopes. These three models are capable of replicating GR outflow. Water balance models have the smallest number of parameters (≤7) to estimate. Hydrus-1D requires substantial parameterization effort for soil hydraulic properties but can simulate unsaturated soil water flow processes. Although SWMM has a large number of parameters (>10), it can simulate water transport through the entire GR profile. In addition, SWMM GR models can be easily incorporated into SWMM's stormwater model framework, so it is widely used to simulate the watershed-scale effects of GR implementations. Four research gaps limiting GR model applications are identified and discussed: drainage mat flow simulations, soil characterization, evapotranspiration estimates, and scale effects of GRs. The literature documents promising results in GR simulations for rainfall events, however, a critical need remains for long-term monitoring and modeling of full-scale GR systems to allow interpretation of both internal (substrate) and external (meteorological characteristics) system effects on stormwater management.more » « less
-
Trial by trial EEG based BCI for distress versus non distress classification in individuals with ASDnull (Ed.)Abstract Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is often accompanied by impaired emotion regulation (ER). There has been increasing emphasis on developing evidence-based approaches to improve ER in ASD. Electroencephalography (EEG) has shown success in reducing ASD symptoms when used in neurofeedback-based interventions. Also, certain EEG components are associated with ER. Our overarching goal is to develop a technology that will use EEG to monitor real-time changes in ER and perform intervention based on these changes. As a first step, an EEG-based brain computer interface that is based on an Affective Posner task was developed to identify patterns associated with ER on a single trial basis, and EEG data collected from 21 individuals with ASD. Accordingly, our aim in this study is to investigate EEG features that could differentiate between distress and non-distress conditions. Specifically, we investigate if the EEG time-locked to the visual feedback presentation could be used to classify between WIN (non-distress) and LOSE (distress) conditions in a game with deception. Results showed that the extracted EEG features could differentiate between WIN and LOSE conditions (average accuracy of 81%), LOSE and rest-EEG conditions (average accuracy 94.8%), and WIN and rest-EEG conditions (average accuracy 94.9%).more » « less
An official website of the United States government
